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Speckle in coherent imaging systems

e Synthetic Aperture Radar
e Digital Holography
e Optical Coherence Tomography surrace

Image adapted from [Goodman, 1976].
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Clean

» Speckle is modeled as -

multiplicative noise
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Despeckling

e Goal: Recover X ¢ R" from Y € R":
Y=XoW,

W ~ N(0,021) and Y; = X;W;.
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o Maximum likelihood estimation:

% Y
MLE: X = argmin —logP(Y | X =u) = A4
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e Some knowledge/assumption over X is required:

o Classical algorithms (e.g., LMMSE in a transform domain, sparsity etc.)
o Learning-based techniques (e.g., CNN trained on a dataset)
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Noise2Noise [7]

SAR2SAR [15]

Unpaired
Learning-based

QMAP [8]

BD-QMAP [16]

X classic methods : strong assumptions on source model

X paired learning-based : requires access to a labeled dataset
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Outline

QMAP: Theoretically-founded learning-based denoiser
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Towards a theoretically-founded denoiser

Minimum mean squared error denoiser:

MMSE: X =E[X|Y]
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Towards a theoretically-founded denoiser

Minimum mean squared error denoiser:

MMSE: X =E[X|Y]

X Access to P(X) is often non-trivial.
X Given P(X), computing E[X|Y] is intractable.

X Theoretical analysis is hard, especially for high-dimensional X .
Same challenges for maximum a’posteriori denoiser:

MAP: X =argmin —logP(Y | X = u) — logP(X = v)
ueR"
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QMAP: Theoretically-founded additive denoiser

MAP: X =argmin —logP(Y | X =u) + —logP(X = u)

n . .
ueR measurement-alignment structure-consistency
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QMAP: Theoretically-founded additive denoiser

QMAP: X =argmin —logP(Y [ X =u) + A  cu(u)

ueR" -
measurement-alignment structure-consistency

Measure of quantized structural consistency for [uj- - ukti—1] € Rk
w; i= —log P([ X - - Xkqi-1lp = Ui+~ tkti-1]),

aw(u) = Z w;
i=1

Key observations [Zhou et al., 2023]:
e Asymptotically optimal in high SNR regime.

e A small subset of weights w; capture most source information.
e The set of weights w; can be found from b-bit quantized k-th

order empirical distribution learned from a set of realizations.
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QMAP for piecewise constant source

Consider Markov source (p < 1):

X; with probability 1 — p,
Xiy1 =
Uniform(0, 1) with probability p.

10/22



QMAP for piecewise constant source

Consider Markov source (p < 1):

X; with probability 1 — p,
Xit1 =
Uniform(0, 1) with probability p.
A
ug
100 4wy ug .-
*----0----0- '
i Uy Uus E
e
Un—1 Up
0.00 et
' time ”

10/22



QMAP for piecewise constant source

Consider Markov source (p < 1):

X; with probability 1 — p,
Xiy1 =
Uniform(0, 1) with probability p.
1.00
¥ ul U9 us Ug
| @ =@ @ Pl
| Uy Uus :
ot
| Up-1 Un
time ¢ M

10/22



QMAP for piecewise constant source

Consider Markov source (p < 1):

X; with probability 1 — p,
Xit1 =
Uniform(0, 1) with probability p.

k=2.

— log(1 — p) Uj = Uig1

= —log P(|.Xi, Xiy1]p = [uj, uita]) o
— log(p) Ui 7 Ujt1

time 10/22



QMAP for piecewise constant source

Consider Markov source (p < 1):

X; with probability 1 — p,
Xit1 =
Uniform(0, 1) with probability p.

k=2.
n—1
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Outline

Bayesian despeckling via QMAP
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Despeckling via QMAP: BD-QMAP [Zafari and Jalali, 2025]

Y=X0oW:

X =argmin —logP(Y | X=u) + A cw(U)

ueR" - P
measurement-alignment structure-consistency
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Despeckling via QMAP: BD-QMAP [Zafari and Jalali, 2025]

Y=X0oW:

~

n Y2
X = arg min E log u? + - + A cw(u)
ueR”" = u; .

i=1 0 structure-consistency

measurement-alignment
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Despeckling via QMAP: BD-QMAP [Zafari and Jalali, 2025]

Y=X0oW:

~

n
Y?
X = arg min E log u? + - + A cw(u)
U?
i=1 i

n
u€R structure-consistency

measurement-alignment

e Same set of weights can be used for despeckling/denoising.

e For piecewise constant source empirical distribution of quantized X
can be estimated from a dataset.

e While MSE can still be used as the reconstruction loss, likelihood is
a more natural choice.
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BD-QMAP on piecewise constant source
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Outline

BD-QMAP for Images: Unpaired Learning-based Despeckler
Challenges
Results
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BD-QMAP extension for image data: Challenges
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BD-QMAP extension for image data: Challenges

Challenge 1 | Finding weights ¢y (u)

e Quantizing and counting less effective as n *

e Recall: only a small subset of weights are important.

Quantized representation in a transform domain.

Challenge 2 | Joint optimization of all pixels in v € R"

~

n

y_2

X = arg min g log u? + —  + A cw(u)
ueR" i—1 L

e eg, n=256x 256 =2 — Practically infeasible (cw(u) non-convex)

(sub-optimal) patch-wise optimization

Next 2 slides detail both solutions.
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BD-QMAP for image data: learning weights

Challenge 1

e Prohibitively large number of patches o bxk?

e Recall: small subset of w capture most of the source information.
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BD-QMAP for image data: learning weights

Challenge 1

e Prohibitively large number of patches o bxk?

e Recall: small subset of w capture most of the source information.

Autoencoder with binary bottleneck trained to minimize MSE.

un-flatten

flatten

—x—

OO =20 =0 =
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BD-QMAP extension for image data: patch-wise

Challenge 2

~

Despeckle k x k patches (k < n)

k2

. i

X = arg min E log u? + - + A w(u)
uclRkxk 1 UI-

structure-consistency

measurement-alignment
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BD-QMAP extension for image data: patch-wise

Challenge 2

~

To despeckle a pixel:
1. Extract all patches
including the pixel
2. Despeckle each patch
(parallel in a batch)

3. Average proportionally

Despeckle k x k patches (k < n)

k2 Y-2
X = arg min E log u? + - + A w(u)
uclRkxk 1 u;

structure-consistency

measurement-alignment

>

BD-QMAP
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BD-QMAP: Synthetic speckle

Despeckling performance on Setll images.

Despeckling Method PSNR  SSIM

speckled image 09.39 0.14
box car 17.11  0.42
Kuan (enhanced) 20.20 041
SAR-BM3D 22.75 0.60
ID-CNN 23.55  0.60

BD-QMAP (7 x7) 2146 054
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BD-QMAP: Sample visual comparison

Speckled [11.15/0.07] Kuan Enhanced [22.71/ 0.43]

ID-CNN [26.13/0.70]




Speckle noise and despeckling

QMAP: Theoretically-founded learning-based denoiser
Bayesian despeckling via QMAP

BD-QMAP for Images: Unpaired Learning-based Despeckler

Final Remarks
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Key takeaways & future directions

e Broad applicability of the despeckler for different noise settings.
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Key takeaways & future directions

e Broad applicability of the despeckler for different noise settings.
e Generalizability across diverse sources, including 1D and 2D data.

e Patch-wise despeckling offers room for further investigation:

Patch-wise Joint
+ 8 dB
Piecewise Constant 14.14dB — 22.25dB
+ 7 dB

Setll Images (average) 2146dB — 7 dB

e Enhanced weight-learning strategies for image data have yet to be
explored.
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