An Unpaired Learning-based Method for Image Despeckling

CISA 2025

Ali Zafari Shirin Jalali

Department of Electrical and Computer Engineering Rutgers University Speckle noise and despeckling

QMAP: Theoretically-founded learning-based denoiser

Bayesian despeckling via QMAP

BD-QMAP for Images: Unpaired Learning-based Despeckler

Final Remarks

Speckle noise and despeckling

QMAP: Theoretically-founded learning-based denoiser

Bayesian despeckling via QMAP

BD-QMAP for Images: Unpaired Learning-based Despeckler

Final Remarks

Speckle in coherent imaging systems

- Synthetic Aperture Radar
- Digital Holography
- Optical Coherence Tomography

Image adapted from [Goodman, 1976].

Speckle in coherent imaging systems

- Synthetic Aperture Radar
- Digital Holography
- Optical Coherence Tomography

Image adapted from [Goodman, 1976].

 Speckle is modeled as multiplicative noise

Y = XW,

 $W \sim \mathcal{N}(\mathbf{0}, \sigma^2)$.

Speckled

Despeckling

• **Goal**: Recover $X \in \mathbb{R}^n$ from $Y \in \mathbb{R}^n$:

$$Y=X\odot W,$$

$$W \sim \mathcal{N}(0, \sigma^2 I)$$
 and $Y_i = X_i W_i$.

Despeckling

• **Goal**: Recover $X \in \mathbb{R}^n$ from $Y \in \mathbb{R}^n$:

$$Y=X\odot W,$$

$$W \sim \mathcal{N}(0, \sigma^2 I)$$
 and $Y_i = X_i W_i$.

• Maximum likelihood estimation:

MLE:
$$\widehat{X} = \underset{u \in \mathbb{R}^n}{\operatorname{arg\,min}} - \log \mathbb{P}(Y \mid X = u) = \frac{|Y|}{\sigma}$$

Despeckling

• **Goal**: Recover $X \in \mathbb{R}^n$ from $Y \in \mathbb{R}^n$:

$$Y=X\odot W,$$

$$W \sim \mathcal{N}(0, \sigma^2 I)$$
 and $Y_i = X_i W_i$.

• Maximum likelihood estimation:

MLE:
$$\widehat{X} = \underset{u \in \mathbb{R}^n}{\operatorname{arg\,min}} - \log \mathbb{P}(Y \mid X = u) = \frac{|Y|}{\sigma}$$

- Some knowledge/assumption over X is required:
 - Classical algorithms (e.g., LMMSE in a transform domain, sparsity etc.)
 - Learning-based techniques (e.g., CNN trained on a dataset)

From additive denoising to despeckling

		$\frac{AWGN}{Y = X + Z}$		$Speckle$ $Y = X \odot W$	
		LMMSE	Filtering [1]	Lee/Kuan [9]	
	Classic Methods	NLM [2]		PPB [10]	
		BM	3D [3]	SAR-BM3D [11]	
		DnCNN [4]		ID-CNN [12]	
	Paired	Restormer [5]		Transformer-based Despeckler [13]	
	Learning-based	DDRM (diffusion-based) [6]		SAR-DDPM [14]	
		Noise2Noise [7]		SAR2SAR [15]	
	Unpaired Learning-based	QMAP [8]		BD-QMAP [16]	
[1	Wallis (1976)	[2] Buades (2005)	[3] Daboy (2007)	[4] Zhang (2016)	
[5] Zamir (2022)	[6] Kawar (2022)	[7] Lehtinen (2018)	[8] Zhou (2023)	
[9] Kuan (1985) [13] Perera (2022)		[10] Deledalle (2009) [14] Perera (2023)	[11] Parrilli (2011) [15] Dalsasso (2021)	[12] Wang (2017) [16] Zafari (2025)	

From additive denoising to despeckling

	AWGN	Speckle
	Y = X + Z	$Y = X \odot W$
	LMMSE Filtering [1]	Lee/Kuan [9]
Classic Methods	NLM [2]	PPB [10]
	BM3D [3]	SAR-BM3D [11]
	DnCNN [4]	ID-CNN [12]
Paired	Restormer [5]	Transformer-based Despeckler [13]
Learning-based	DDRM (diffusion-based) [6]	SAR-DDPM [14]
	Noise2Noise [7]	SAR2SAR [15]
Unpaired Learning-based	QMAP [8]	BD-QMAP [16]

X classic methods : strong assumptions on source model

From additive denoising to despeckling

	AWGN	Speckle
	Y = X + Z	$Y = X \odot W$
	LMMSE Filtering [1]	Lee/Kuan [9]
Classic Methods	NLM [2]	PPB [10]
	BM3D [3]	SAR-BM3D [11]
	DnCNN [4]	ID-CNN [12]
Paired	Restormer [5]	Transformer-based Despeckler [13]
Learning-based	DDRM (diffusion-based) [6]	SAR-DDPM [14]
	Noise2Noise [7]	SAR2SAR [15]
Unpaired Learning-based	QMAP [8]	BD-QMAP [16]

X classic methods : strong assumptions on source model

X paired learning-based : requires access to a labeled dataset

Speckle noise and despeckling

QMAP: Theoretically-founded learning-based denoiser

Bayesian despeckling via QMAP

BD-QMAP for Images: Unpaired Learning-based Despeckler

Final Remarks

Minimum mean squared error denoiser:

MMSE:
$$\widehat{X} = \mathbb{E}[X|Y]$$

Minimum mean squared error denoiser:

MMSE:
$$\widehat{X} = \mathbb{E}[X|Y]$$

X Access to $\mathbb{P}(X)$ is often non-trivial.

Minimum mean squared error denoiser:

MMSE: $\widehat{X} = \mathbb{E}[X|Y]$

X Access to $\mathbb{P}(X)$ is often non-trivial.

X Given $\mathbb{P}(X)$, computing $\mathbb{E}[X|Y]$ is intractable.

Minimum mean squared error denoiser:

MMSE: $\widehat{X} = \mathbb{E}[X|Y]$

- **X** Access to $\mathbb{P}(X)$ is often non-trivial.
- **×** Given $\mathbb{P}(X)$, computing $\mathbb{E}[X|Y]$ is intractable.
- \checkmark Theoretical analysis is hard, especially for high-dimensional X.

Minimum mean squared error denoiser:

MMSE: $\widehat{X} = \mathbb{E}[X|Y]$

- × Access to $\mathbb{P}(X)$ is often non-trivial.
- **X** Given $\mathbb{P}(X)$, computing $\mathbb{E}[X|Y]$ is intractable.
- X Theoretical analysis is hard, especially for high-dimensional X.

Same challenges for *maximum a'posteriori* denoiser:

MAP:
$$\widehat{X} = \underset{u \in \mathbb{R}^n}{\operatorname{arg\,min}} - \log \mathbb{P}(Y \mid X = u) - \log \mathbb{P}(X = u)$$

MAP:
$$\widehat{X} = \underset{u \in \mathbb{R}^n}{\operatorname{arg min}} - \log \mathbb{P}(Y \mid X = u) + -\log \mathbb{P}(X = u)$$

measurement-alignment structure-consistency

QMAP:
$$\hat{X} = \underset{u \in \mathbb{R}^n}{\operatorname{arg min}} - \log \mathbb{P}(Y \mid X = u) + \lambda c_w(u)$$

measurement-alignment structure-consistency

QMAP:
$$\widehat{X} = \arg\min_{u \in \mathbb{R}^n} -\log \mathbb{P}(Y \mid X = u) + \lambda c_w(u)$$

measurement-alignment structure-consistency

Measure of *quantized structural consistency* for $[u_i \cdots u_{k+i-1}] \in \mathbb{R}^k$

$$w_i := -\log \mathbb{P}(\lfloor X_i \cdots X_{k+i-1} \rceil_b = [u_i \cdots u_{k+i-1}]),$$

where $\lfloor \cdot \rceil_b$ quantizes to b bits.

QMAP:
$$\widehat{X} = \underset{u \in \mathbb{R}^n}{\operatorname{arg min}} - \log \mathbb{P}(Y \mid X = u) + \lambda \qquad c_w(u)$$

measurement-alignment structure-consistency

Measure of *quantized structural consistency* for $[u_i \cdots u_{k+i-1}] \in \mathbb{R}^k$

$$w_i := -\log \mathbb{P}(\lfloor X_i \cdots X_{k+i-1} \rceil_b = [u_i \cdots u_{k+i-1}]),$$
$$c_w(u) := \sum_{i=1} w_i$$

QMAP:
$$\widehat{X} = \arg\min_{u \in \mathbb{R}^n} -\log \mathbb{P}(Y \mid X = u) + \lambda c_w(u)$$

measurement-alignment structure-consistency

Measure of *quantized structural consistency* for $[u_i \cdots u_{k+i-1}] \in \mathbb{R}^k$

$$w_i := -\log \mathbb{P}(\lfloor X_i \cdots X_{k+i-1} \rceil_b = [u_i \cdots u_{k+i-1}]),$$
$$c_w(u) := \sum_{i=1} w_i$$

Key observations [Zhou et al., 2023]:

• Asymptotically optimal in high SNR regime.

QMAP:
$$\widehat{X} = \arg\min_{u \in \mathbb{R}^n} -\log \mathbb{P}(Y \mid X = u) + \lambda c_w(u)$$

measurement-alignment structure-consistency

Measure of *quantized structural consistency* for $[u_i \cdots u_{k+i-1}] \in \mathbb{R}^k$

$$w_i := -\log \mathbb{P}(\lfloor X_i \cdots X_{k+i-1} \rceil_b = [u_i \cdots u_{k+i-1}]),$$
$$c_w(u) := \sum_{i=1} w_i$$

Key observations [Zhou et al., 2023]:

- Asymptotically optimal in high SNR regime.
- A small subset of weights *w_i* capture most source information.
- The set of weights w_i can be found from *b*-bit quantized *k*-th order empirical distribution learned from a set of realizations.

Consider Markov source ($p \ll 1$):

$$X_{i+1} = \begin{cases} X_i \\ \text{Uniform}(0,1) \end{cases}$$

with probability 1 - p,

with probability p.

Consider Markov source ($p \ll 1$):

$$X_{i+1} = \begin{cases} X_i \\ \text{Uniform}(0,1) \end{cases}$$

with probability 1 - p,

with probability p.

Consider Markov source ($p \ll 1$):

$$X_{i+1} = \begin{cases} X_i \\ \text{Uniform}(0,1) \end{cases}$$

with probability 1 - p,

with probability p.

b = 2

Consider Markov source ($p \ll 1$):

$$X_{i+1} = \begin{cases} X_i \\ \text{Uniform}(0,1) \end{cases}$$

with probability 1 - p,

with probability p.

b = 2 , k = 2.

Consider Markov source ($p \ll 1$):

Speckle noise and despeckling

QMAP: Theoretically-founded learning-based denoiser

Bayesian despeckling via QMAP

BD-QMAP for Images: Unpaired Learning-based Despeckler

Final Remarks

 $Y = X \odot W$:

$$\widehat{X} = \underset{u \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad -\log \mathbb{P}(Y \mid X = u) + \lambda \quad c_{w}(u)$$

measurement-alignment structure-consistency

 $Y = X \odot W$:

 $Y = X \odot W$:

• Same set of weights can be used for despeckling/denoising.

 $Y = X \odot W$:

- Same set of weights can be used for despeckling/denoising.
- For piecewise constant source empirical distribution of quantized X can be estimated from a dataset.

 $Y = X \odot W$:

- Same set of weights can be used for despeckling/denoising.
- For piecewise constant source empirical distribution of quantized X can be estimated from a dataset.
- While MSE can still be used as the reconstruction loss, likelihood is a more natural choice.

For more theoretical analysis of BD-QMAP look at

Zafari, A., & Jalali, S. (2025) Bayesian Despeckling of Structured Sources. arXiv:2501.11860. Speckle noise and despeckling

QMAP: Theoretically-founded learning-based denoiser

Bayesian despeckling via QMAP

BD-QMAP for Images: Unpaired Learning-based Despeckler Challenges Results

Final Remarks

Challenge 1 Finding weights $c_w(u)$

• Quantizing and counting less effective as $n \nearrow$

Challenge 1 Finding weights $c_w(u)$

- Quantizing and counting less effective as $n \nearrow$
- Recall: only a small subset of weights are important.

Challenge 1 Finding weights $c_w(u)$

- Quantizing and counting less effective as $n \nearrow$
- Recall: only a small subset of weights are important.

Solution Quantized representation in a transform domain.

Challenge 1 Finding weights $c_w(u)$

- Quantizing and counting less effective as $n \nearrow$
- Recall: only a small subset of weights are important.

Solution Quantized representation in a transform domain.

Challenge 2 Joint optimization of all pixels in $u \in \mathbb{R}^n$

$$\widehat{X} = \underset{u \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \sum_{i=1}^n \log u_i^2 + \frac{Y_i^2}{u_i^2} \quad + \quad \lambda \quad \underline{c_w(u)}$$

Challenge 1 Finding weights $c_w(u)$

- Quantizing and counting less effective as $n \nearrow$
- Recall: only a small subset of weights are important.

Solution Quantized representation in a transform domain.

Challenge 2 Joint optimization of all pixels in $u \in \mathbb{R}^n$

$$\widehat{X} = \underset{u \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \sum_{i=1}^n \log u_i^2 + \frac{Y_i^2}{u_i^2} \quad + \quad \lambda \quad c_{w}(u)$$

• e.g., $n = 256 \times 256 = 2^{16} \rightarrow$ Practically infeasible ($c_w(u)$ non-convex)

Challenge 1 Finding weights $c_w(u)$

- Quantizing and counting less effective as $n \nearrow$
- Recall: only a small subset of weights are important.

Solution Quantized representation in a transform domain.

Challenge 2 Joint optimization of all pixels in $u \in \mathbb{R}^n$

$$\widehat{X} = \underset{u \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \sum_{i=1}^n \log u_i^2 + \frac{Y_i^2}{u_i^2} \quad + \quad \lambda \quad c_{w}(u)$$

• e.g., $n = 256 \times 256 = 2^{16} \rightarrow$ Practically infeasible ($c_w(u)$ non-convex)

Solution (sub-optimal) patch-wise optimization

Challenge 1 Finding weights $c_w(u)$

- Quantizing and counting less effective as $n \nearrow$
- Recall: only a small subset of weights are important.

Solution Quantized representation in a transform domain.

Challenge 2 Joint optimization of all pixels in $u \in \mathbb{R}^n$

$$\widehat{X} = \underset{u \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \sum_{i=1}^n \log u_i^2 + \frac{Y_i^2}{u_i^2} \quad + \quad \lambda \quad c_{w}(u)$$

• e.g., $n = 256 \times 256 = 2^{16} \rightarrow$ Practically infeasible ($c_w(u)$ non-convex)

Solution (sub-optimal) patch-wise optimization

Next 2 slides detail both solutions.

BD-QMAP for image data: learning weights

Challenge 1

- Prohibitively large number of patches $\propto 2^{b \times k^2}$
- Recall: small subset of ${\bf w}$ capture most of the source information.

BD-QMAP for image data: learning weights

Challenge 1

- Prohibitively large number of patches $\propto 2^{b \times k^2}$
- Recall: small subset of **w** capture most of the source information.

Autoencoder with binary bottleneck trained to minimize MSE.

BD-QMAP extension for image data: patch-wise

Challenge 2 Despeckle $k \times k$ patches ($k \ll n$)

$$\widehat{X} = \underset{u \in \mathbb{R}^{k \times k}}{\arg\min} \sum_{i=1}^{k^2} \log u_i^2 + \frac{Y_i^2}{u_i^2} + \lambda \underset{\text{structure-consistency}}{w(u)}$$

BD-QMAP extension for image data: patch-wise

Challenge 2 Despeckle $k \times k$ patches ($k \ll n$)

$$\widehat{X} = \underset{u \in \mathbb{R}^{k \times k}}{\operatorname{arg min}} \sum_{i=1}^{k^2} \log u_i^2 + \frac{Y_i^2}{u_i^2} + \lambda \underbrace{w(u)}_{\text{structure-consistency}}$$

Y

To despeckle a pixel:

- 1. Extract all patches including the pixel
- 2. Despeckle each patch (parallel in a batch)
- 3. Average proportionally

BD-QMAP: Synthetic speckle

Despeckling performance on Set11 images.

Despeckling Method	PSNR	SSIM
speckled image	09.39	0.14
box car	17.11	0.42
Kuan (enhanced)	20.20	0.41
SAR-BM3D	22.75	0.60
ID-CNN	23.55	0.60
BD-QMAP (7×7)	21.46	0.54

BD-QMAP: Sample visual comparison

Speckle noise and despeckling

QMAP: Theoretically-founded learning-based denoiser

Bayesian despeckling via QMAP

BD-QMAP for Images: Unpaired Learning-based Despeckler

Final Remarks

• Broad applicability of the despeckler for different noise settings.

- Broad applicability of the despeckler for different noise settings.
- Generalizability across diverse sources, including 1D and 2D data.

- Broad applicability of the despeckler for different noise settings.
- Generalizability across diverse sources, including 1D and 2D data.
- Patch-wise despeckling offers room for further investigation:

	Patch-wise		Joi	nt
Piecewise Constant	14.14 dB	+ 8 dB	22.25	i dB
Set11 Images (average)	21.46 dB	+ ? dB	?	dB

- Broad applicability of the despeckler for different noise settings.
- Generalizability across diverse sources, including 1D and 2D data.
- Patch-wise despeckling offers room for further investigation:

	Patch-wise		Joi	nt
Piecewise Constant	14.14 dB	+ 8 dB	22.25	dB
Set11 Images (average)	21.46 dB	+ ? dB	?	dB

 Enhanced weight-learning strategies for image data have yet to be explored.

- Goodman, Joseph W [1976]. "Some fundamental properties of speckle". In: *Journal of the Optical Society of America*.
- Zafari, Ali and Jalali, Shirin [2025]. "Bayesian despeckling of structured sources". In: *arXiv preprint arXiv:2501.11860*.
- Zhou, Wenda and Wabnig, Joachim and Jalali, Shirin [2023].

"Bayesian denoising of structured sources and its implications on learning-based denoising". In: *Information and Inference: A Journal of the IMA*.