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Speckle in coherent imaging systems

• Synthetic Aperture Radar

• Digital Holography

• Optical Coherence Tomography

Image adapted from [Goodman, 1976].

▶ Speckle is modeled as

multiplicative noise

Y = XW ,

W ∼ N (0, σ2) .

Clean Speckled
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Despeckling

• Goal: Recover X ∈ Rn from Y ∈ Rn :

Y = X ⊙W ,

W ∼ N (0, σ2I ) and Yi = XiWi .

• Maximum likelihood estimation:

MLE: X̂ = argmin
u∈Rn

− logP(Y | X = u) =
|Y |
σ

• Some knowledge/assumption over X is required:

◦ Classical algorithms (e.g., LMMSE in a transform domain, sparsity etc.)

◦ Learning-based techniques (e.g., CNN trained on a dataset)
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From additive denoising to despeckling

AWGN Speckle

Y = X + Z Y = X ⊙W

Classic Methods

LMMSE Filtering [1] Lee/Kuan [9]

NLM [2] PPB [10]

BM3D [3] SAR-BM3D [11]

Paired
Learning-based

DnCNN [4] ID-CNN [12]

Restormer [5] Transformer-based Despeckler [13]

DDRM (diffusion-based) [6] SAR-DDPM [14]

Noise2Noise [7] SAR2SAR [15]

Unpaired
Learning-based QMAP [8] BD-QMAP [16]

[1] Wallis (1976) [2] Buades (2005) [3] Dabov (2007) [4] Zhang (2016)

[5] Zamir (2022) [6] Kawar (2022) [7] Lehtinen (2018) [8] Zhou (2023)

[9] Kuan (1985) [10] Deledalle (2009) [11] Parrilli (2011) [12] Wang (2017)

[13] Perera (2022) [14] Perera (2023) [15] Dalsasso (2021) [16] Zafari (2025)

✗ classic methods : strong assumptions on source model

✗ paired learning-based : requires access to a labeled dataset
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Towards a theoretically-founded denoiser

Minimum mean squared error denoiser:

MMSE: X̂ = E[X |Y ]

✗ Access to P(X ) is often non-trivial.

✗ Given P(X ) , computing E[X |Y ] is intractable.

✗ Theoretical analysis is hard, especially for high-dimensional X .

Same challenges for maximum a’posteriori denoiser:

MAP: X̂ = argmin
u∈Rn

− logP(Y | X = u)− logP(X = u)
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QMAP: Theoretically-founded additive denoiser

MAP: X̂ = argmin
u∈Rn

− logP(Y | X = u)
measurement-alignment

+ − logP(X = u)
structure-consistency

QMAP: X̂ = argmin
u∈Rn

− logP(Y | X = u)
measurement-alignment

+ λ cw(u)
structure-consistency

Measure of quantized structural consistency for [ui · · · uk+i−1] ∈ Rk

wi := − logP(⌊Xi · · ·Xk+i−1⌉b = [ui · · · uk+i−1]),

cw(u) :=
∑
i=1

wi

Key observations [Zhou et al., 2023]:

• Asymptotically optimal in high SNR regime.

• A small subset of weights wi capture most source information.

• The set of weights wi can be found from b -bit quantized k -th

order empirical distribution learned from a set of realizations.
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QMAP for piecewise constant source

Consider Markov source (p ≪ 1 ):

Xi+1 =

Xi with probability 1− p,

Uniform(0, 1) with probability p.

b = 2 , k = 2.

10 / 22



QMAP for piecewise constant source

Consider Markov source (p ≪ 1 ):

Xi+1 =

Xi with probability 1− p,

Uniform(0, 1) with probability p.

b = 2 , k = 2.

0.00

1.00

time

10 / 22



QMAP for piecewise constant source

Consider Markov source (p ≪ 1 ):

Xi+1 =

Xi with probability 1− p,

Uniform(0, 1) with probability p.

b = 2

, k = 2.

0.00

0.25

0.50

0.75

1.00

time

2-bit quantization

10 / 22



QMAP for piecewise constant source

Consider Markov source (p ≪ 1 ):

Xi+1 =

Xi with probability 1− p,

Uniform(0, 1) with probability p.

b = 2 , k = 2.

wi = − logP(⌊Xi ,Xi+1⌉b = [ui , ui+1]) ∝

− log(1− p) ui = ui+1

− log(p) ui ̸= ui+1

0.00

0.25

0.50

0.75

1.00

time 10 / 22



QMAP for piecewise constant source

Consider Markov source (p ≪ 1 ):

Xi+1 =

Xi with probability 1− p,

Uniform(0, 1) with probability p.

b = 2 , k = 2.

cw(u) =
n−1∑
i=1

wi

0.00

0.25

0.50

0.75

1.00

time

10 / 22



Outline

Speckle noise and despeckling

QMAP: Theoretically-founded learning-based denoiser

Bayesian despeckling via QMAP

BD-QMAP for Images: Unpaired Learning-based Despeckler

Final Remarks

11 / 22



Despeckling via QMAP: BD-QMAP [Zafari and Jalali, 2025]

Y = X ⊙W :

X̂ = argmin
u∈Rn

− logP(Y | X = u)
measurement-alignment

+ λ cw(u)
structure-consistency

X̂ = argmin
u∈Rn

n∑
i=1

log u2i +
Y 2
i

u2i
measurement-alignment

+ λ cw(u)
structure-consistency

• Same set of weights can be used for despeckling/denoising.

• For piecewise constant source empirical distribution of quantized X

can be estimated from a dataset.

• While MSE can still be used as the reconstruction loss, likelihood is

a more natural choice.
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BD-QMAP on piecewise constant source

0 2000 4000 6000 8000 10000

0.0

0.2

0.4
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1.0

X
|Y|
XLee

XBD QMAPb

0.001 0.010 0.050 0.100
q0
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45

PS
NR

 [d
B]

(37.81)

(37.79)

BD-QMAPb (b=2)
BD-QMAPb (b=3)
BD-QMAP (b=2)
BD-QMAP (b=3)
Genie-Aided ML
MSE Lowerbound (Thm. 1)

For more theoretical analysis

of BD-QMAP look at

Zafari, A., & Jalali, S. (2025)

Bayesian Despeckling of

Structured Sources.

arXiv:2501.11860.
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BD-QMAP extension for image data: Challenges

Challenge 1 Finding weights cw(u)

• Quantizing and counting less effective as n ↗
• Recall: only a small subset of weights are important.

Solution Quantized representation in a transform domain.

Challenge 2 Joint optimization of all pixels in u ∈ Rn

X̂ = argmin
u∈Rn

n∑
i=1

log u2i +
Y 2
i

u2i
+ λ cw(u)

• e.g., n = 256× 256 = 216 → Practically infeasible ( cw(u) non-convex)

Solution (sub-optimal) patch-wise optimization

Next 2 slides detail both solutions.
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BD-QMAP for image data: learning weights

Challenge 1

• Prohibitively large number of patches ∝ 2b×k2

• Recall: small subset of w capture most of the source information.

Autoencoder with binary bottleneck trained to minimize MSE.

MLP

1
0
1
0
1
0
0

MLPk 

 k 

flatten un-flatten  
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BD-QMAP extension for image data: patch-wise

Challenge 2 Despeckle k × k patches (k ≪ n )

X̂ = argmin
u∈Rk×k

k2∑
i=1

log u2i +
Y 2
i

u2i
measurement-alignment

+ λ w(u)
structure-consistency

To despeckle a pixel:

1. Extract all patches

including the pixel

2. Despeckle each patch

(parallel in a batch)

3. Average proportionally

k

 k 

BD
-Q

M
AP
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BD-QMAP: Synthetic speckle

Despeckling performance on Set11 images.

1 2 3 4 5 6 7 8 9 10 11

Despeckling Method PSNR SSIM

speckled image 09.39 0.14

box car 17.11 0.42

Kuan (enhanced) 20.20 0.41

SAR-BM3D 22.75 0.60

ID-CNN 23.55 0.60

BD-QMAP (7× 7) 21.46 0.54
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BD-QMAP: Sample visual comparison

Clean Speckled [11.15 / 0.07] Kuan Enhanced [22.71 /  0.43]

SAR-BM3D [25.58 / 0.72] ID-CNN [26.13 / 0.70] BD-QMAPb (7x7) [24.29 / 0.61]
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Key takeaways & future directions

• Broad applicability of the despeckler for different noise settings.

• Generalizability across diverse sources, including 1D and 2D data.

• Patch-wise despeckling offers room for further investigation:

Patch-wise Joint

Piecewise Constant 14.14 dB
+ 8 dB

−−−−−−→ 22.25 dB

Set11 Images (average) 21.46 dB
+ ? dB

−−−−−−→ ? dB

• Enhanced weight-learning strategies for image data have yet to be

explored.
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