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Channel Simulation Review

M Noiseless M
bit channel |

Noisy channel Py x

Setup:
» Given a noiseless channel.
» Goal: simulate a noisy channel Py .
» Encoder observes input X and sends a description M noiselessly.
» Decoder produces output Y/, s.t.

Y ~ Py x (-] X).

» Encoder/decoder may also share common randomness W.
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Non-Dithered Quantization

Scheme:
Y =Q(X)=a|X+1], XeR

» Encoder sends M = | X/A+1/2| € Z
= Using Huffman code to encode into a sequence of bits.

» Decoder reconstructs Y = AM.
» Limitation: P);‘X # Py|x.
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Dithered Scalar Quantization

Introduce randomness with common dither W ~ Unif(—3, 3):
Y:AQ§+W+%J fW).

» Encoder: K = [ X/A+W +1/2].
» Decoder: Y = A(K — W).

» Quantization error:

Y — X ~ Unif(-4,%), independent of X.
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Example
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Figure: Subtractive dithering with A =1, X = 1.55. We first generate the dither signal W ~ Unif (-3, 3), and then find
the reconstruction level among {...,—2 — W, —1 — W, —W, 1 — W,...} that is closest to X, and output it as Y.
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Additive Noise Simulation View

» Goal: simulate
Y=X+Z, Z ~iid Unif(-5,%).

» Apply dithered quantization entrywise with common randomness

W - (Wl, .. -,Wn), VI/? ~ Ild Unlf(ié’ %) )

For any distribution Px over R",

H(Y | W) =I(X;Y) = h(Y) — nlog, A.

» Achieve the minimum conditional entropy for simulating the additive noise channel Py |x

» If encode Y using Huffman code, then the expected length is at most 1 bit away from the
minimal expected length L*.
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Universal Quantization Property

With step size A = 2v/3D (so E[||X - Y|]?]/n=D), D >0
H(Y |W) < R(D)+ Zlog, %¢ < R(D)+ 0.755n.

where

R(D) := inf I(X;X)
Py x: n~'E[I|X—X|?]<D

» Dithered quantization is universally near-optimal.
» Gap to R(D) < 0.755 bits/dimension.
» Works for any source distribution Px.
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Layered Randomized Quantization

» Add noise Unif(—A/2, A/2) = simulated noise can be uniform over any interval.
» ldea: extend this to simulate any unimodal noise distribution f .

» Approach: express f as a mixture of uniform distributions over intervals
fa) = [ VOI(LE (1)) - Unifas L () ds,
0

where LT (f) := {:1: € R: f(x) > s} is the superlevel set of f;
)=

Vol(Lt(f) LE(f) —inf LF(f). And
o _ Hze i)} . :
Unif(z; LT (f)) = W is pdf of Unif(L!(f)).

= simulate the noise distribution f, by randomly selecting s and applying subtractive
dithering to produce a noise distribution Unif(L} (f)).

1A pdf f: R — R is unimodal if there exists ¢ € R such that f(x) is nondecreasing over x € (—oo, |, and
nonincreasing over x € [c, 00).
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Scheme

1. Generate common randomness (.S, W):
S~ fs(s) = Vol(L(f)), W ~ Unif(—3, ).
2. Encoder (given X, S, W):
A=fs(s), K=|X+w+i.
3. Decoder (given S, W, K):

supLj{(f) + inijg(f)
2 b

B =

Y=A(K-W)+B.

Key Properties:

» Conditional on S = s, the scheme reduces to subtractive dithering.
» Randomizing over S makes the overall noise law exactly f.

» Provides a channel simulation method for any unimodal noise distribution.
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Asymptotic Optimality
» Not universally optimal, but becomes asymptotically optimal in the high-SNR limit.
» Setup: X ~ Unif(0,t), Z ~ f, t — 0.

I(X;X +27) = logyt+O(1).
» Hence, the optimal conditional entropy also grows like

Hi, = logyt+ O(1).

Asymptotic Result

For unimodal f with finite mean,
Hj, =logot —hr(f)+0(3), t— oo,

where
ho(f) == / Vol(Z7 (1)) logs Vol(L¥ (£)) ds

is the layered entropy of f.
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Nonasymptotic Bound

Nonasymptotic Result

For an unimodal f with finite mean, and any source distribution Py,
HY | S,W) < I(X;Y) +h(f) — hr(f),

where
h(f) = differential entropy of f, hp(f) = layered entropy of f.

» Expected description length is bounded by

I(X;Y) +h(f) = ho(f) + 1.
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Exact Fixed-Length Channel Simulation

» Description M € [N] has a fixed size N.
> Goal:

N* =min N

s.t. Py|X = PY|X

» Only certain schemes (e.g., subtractive dithering, layered randomized quantizers) can be
adapted to exact fixed-length form.

» Unlike variable-length, exact fixed-length simulation incurs an extra penalty.
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Optimal Description Length

Optimal Description Size

For finite discrete X', ) with common randomness, the exact fixed-length description size is

N* = min {k : Pyx € cov({Qyx : 17 Qy xlo < k})}.

» Py x: conditional probability matrices wit entries (Py |x ),y = Py x (y|z).
» Qy)x: conditional probability matrices with at most k& nonzero columns.

» conv(-): convex hull of such matrices.

Penalty:
» Unlike variable-length (cost ~ I(X;Y) bits), fixed-length may need much larger N*.
» Hence N* can be significantly larger than L* (optimum variable length).
» The exact fixed-length channel simulation is inefficient.
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