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Channel Simulation Review

Setup:

▶ Given a noiseless channel.

▶ Goal: simulate a noisy channel PY |X .

▶ Encoder observes input X and sends a description M noiselessly.

▶ Decoder produces output Y , s.t.

Y ∼ PY |X(·|X).

▶ Encoder/decoder may also share common randomness W .
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Non-Dithered Quantization

Scheme:
Y = Q(X) = ∆

⌊
X
∆ + 1

2

⌋
, X ∈ R

▶ Encoder sends M = ⌊X/∆+ 1/2⌋ ∈ Z
⇒ Using Huffman code to encode into a sequence of bits.

▶ Decoder reconstructs Y = ∆M .

▶ Limitation: PỸ |X ̸= PY |X .
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Dithered Scalar Quantization

Introduce randomness with common dither W ∼ Unif(− 1
2 ,

1
2 ):

Y = ∆
(⌊

X
∆ +W + 1

2

⌋
−W

)
.

▶ Encoder: K = ⌊X/∆+W + 1/2⌋.
▶ Decoder: Y = ∆(K −W ).

▶ Quantization error:

Y −X ∼ Unif
(
−∆

2 ,
∆
2

)
, independent of X.
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Example

Figure: Subtractive dithering with ∆ = 1, X = 1.55. We first generate the dither signal W ∼ Unif
(
− 1

2 ,
1
2

)
, and then find

the reconstruction level among {. . . ,−2 − W, −1 − W, −W, 1 − W, . . .} that is closest to X, and output it as Y .
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Additive Noise Simulation View

▶ Goal: simulate
Y = X+ Z, Zi ∼ i.i.d. Unif

(
−∆

2 ,
∆
2

)
.

▶ Apply dithered quantization entrywise with common randomness

W = (W1, . . . ,Wn), Wi ∼ i.i.d. Unif
(
− 1

2 ,
1
2

)
.

Proposition

For any distribution PX over Rn,

H(Y | W) = I(X;Y) = h(Y)− n log2 ∆.

▶ Achieve the minimum conditional entropy for simulating the additive noise channel PY |X
▶ If encode Y using Huffman code, then the expected length is at most 1 bit away from the

minimal expected length L∗.
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Universal Quantization Property

Theorem

With step size ∆ = 2
√
3D (so E[∥X−Y∥2]/n = D), D > 0

H(Y | W) ≤ R(D) + n
2 log2

πe
3 ≤ R(D) + 0.755n.

where
R(D) := inf

PX̂|X:n−1E[∥X−X̂∥2]≤D
I(X; X̂)

▶ Dithered quantization is universally near-optimal.

▶ Gap to R(D) ≤ 0.755 bits/dimension.

▶ Works for any source distribution PX .
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Layered Randomized Quantization

▶ Add noise Unif(−∆/2,∆/2) ⇒ simulated noise can be uniform over any interval.

▶ Idea: extend this to simulate any unimodal noise distribution f 1.

▶ Approach: express f as a mixture of uniform distributions over intervals

f(x) =

∫ ∞

0

Vol(L+
s (f)) · Unif(x;L+

s (f)) ds,

where L+
s (f) := {x ∈ R : f(x) ≥ s} is the superlevel set of f ;

Vol(L+
s (f)) = supL+

s (f)− inf L+
s (f). And

Unif(x;L+
s (f)) :=

1{x ∈ L+
s (f)}

Vol(L+
s (f))

is pdf of Unif(L+
s (f)).

⇒ simulate the noise distribution f , by randomly selecting s and applying subtractive
dithering to produce a noise distribution Unif(L+

s (f)).

1A pdf f : R → R is unimodal if there exists c ∈ R such that f(x) is nondecreasing over x ∈ (−∞, c], and
nonincreasing over x ∈ [c,∞).
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Scheme

1. Generate common randomness (S,W ):

S ∼ fS(s) = Vol(L+
s (f)), W ∼ Unif(− 1

2 ,
1
2 ).

2. Encoder (given X,S,W ):

∆ = fS(S), K =
⌊
X
∆ +W + 1

2

⌋
.

3. Decoder (given S,W,K):

B =
supL+

S (f) + inf L+
S (f)

2
, Y = ∆ · (K −W ) +B.

Key Properties:

▶ Conditional on S = s, the scheme reduces to subtractive dithering.

▶ Randomizing over S makes the overall noise law exactly f .

▶ Provides a channel simulation method for any unimodal noise distribution.
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Asymptotic Optimality
▶ Not universally optimal, but becomes asymptotically optimal in the high-SNR limit.
▶ Setup: X ∼ Unif(0, t), Z ∼ f , t → ∞.

I(X;X + Z) ≈ log2 t+O(1).

▶ Hence, the optimal conditional entropy also grows like

H∗
f,t ≈ log2 t+O(1).

Asymptotic Result

For unimodal f with finite mean,

H∗
f,t = log2 t− hL(f) +O

(
1
t

)
, t → ∞,

where

hL(f) :=

∫ ∞

0

Vol(L+
s (f)) log2 Vol(L

+
s (f)) ds

is the layered entropy of f .
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Nonasymptotic Bound

Nonasymptotic Result

For an unimodal f with finite mean, and any source distribution PX ,

H(Y | S,W ) ≤ I(X;Y ) + h(f)− hL(f),

where
h(f) = differential entropy of f, hL(f) = layered entropy of f.

▶ Expected description length is bounded by

I(X;Y ) + h(f)− hL(f) + 1.
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Exact Fixed-Length Channel Simulation

▶ Description M ∈ [N ] has a fixed size N .

▶ Goal:

N∗ = min N

s.t. PY |X = PŶ |X .

▶ Only certain schemes (e.g., subtractive dithering, layered randomized quantizers) can be
adapted to exact fixed-length form.

▶ Unlike variable-length, exact fixed-length simulation incurs an extra penalty.
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Optimal Description Length

Optimal Description Size

For finite discrete X ,Y with common randomness, the exact fixed-length description size is

N∗ = min
{
k : PY |X ∈ conv

(
{QY |X : ∥1TQY |X∥0 ≤ k}

)}
.

▶ PY |X : conditional probability matrices wit entries (PY |X)x,y = PY |X(y|x).
▶ QY |X : conditional probability matrices with at most k nonzero columns.

▶ conv(·): convex hull of such matrices.

Penalty:

▶ Unlike variable-length (cost ≈ I(X;Y ) bits), fixed-length may need much larger N∗.

▶ Hence N∗ can be significantly larger than L∗ (optimum variable length).

▶ The exact fixed-length channel simulation is inefficient.
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